Basis
Discriminative & Generative Model
- 判别模型 Discriminative Model,又可以称为条件模型,或条件概率模型。估计的是条件概率分布(conditional distribution)
- 生成模型 Generative Model,又叫产生式模型。估计的是联合概率分布(joint probability distribution)
对于这两个模型,我们用一个例子就能很好的解释:假设我们有一些数据 $(x,y)$,数据只有四组:$(1,0), (1,0), (2,0), (2,1)$
Generative Model :
p(x,y) | y=0 | y=1 |
---|---|---|
x=0 | 1/2 | 0 |
x=1 | 1/4 | 1/4 |
Discriminative Model :
p(x\ | y) | y=0 | y=1 |
---|---|---|---|
x=0 | 1 | 0 | |
x=1 | 1/2 | 1/2 |
PGM
概率图有这么几种推断方式
概率图的任务通俗的讲有两个
- Querying:给定或者不给定条件概率下,计算特定变量的概率称为:Inference
- Estimation:当模型某部分是未知的时候,通过数据 $D$ 来推断出未知的模型,这个称为:learning
Inference
Querying 任务通常来说有三种
Likelihood : Likelihood is calculated to get the conditional probability of a different subset of variables conditioned based on Evidence $\mathbf{E} = \{ X_{k+1},…,X_n \}$, Evidence is the unknown variables, so we need eliminate the unsure variables to get the specific lieklihood.
Conditional Probability : The conditional probability distribution of some query nodes conditioned on an
evidence.
Let $\mathbf{Y}$ be a subset of all domain variables $\mathbf{X} = \{ \mathbf{Y},\mathbf{Z} \}$, $\mathbf{Z}$ is the set of variables under elimination.
Most Probable Assignment : In this query, we are interested in finding only one set of values for the query variables that maximize the given conditional probability instead of finding the entire distribution.
Inference 算法可以分为两种
Exact inference(准确推断)
- Elimination
- Message-passing
- sum-product
- belief propagation
- Junction Tree
Approximate inference(近似推断)a
- Variational algorithms
- Loopy belief propagation
- Mean field approximation
一般 Inference 最简单的方法是 Elimination 和 brute force,但是由于概率图模型往往有一些比较特别的结构,我们可以用 Message Passing 的算法来做
- Variational algorithms
Learning
根据观测数据,来推理模型中的参数
在做 inference 的时候,我们希望能将有向图和无向图结合起来,比如,原先的子节点的父节点们,我们希望将他们