The Exponential Family
random variable $\mathbf{X}$ is in the exponential family
- $\eta$ : vector of natural parameters
- $\mathbf{T}$ : vector of sufficient statistics
- $\mathbf{A}$ : log partition function
- $log Z(\eta) = A(\eta)$
Example
Multivariate Gaussian
This implies that:
- $\eta = \left( \Sigma^{-1} \mu, -\frac{1}{2} vec (\Sigma^{-1}) \right)$
- $\mathbf{T}(\mathbf{x}) = (\mathbf{x}, vec(\mathbf{x}\mathbf{x}^T))$
- $A(\eta) = \frac{1}{2} (\mu^T \Sigma^{-1} \mu + \text{ln} |\Sigma|)$
- $h(\mathbf{x}) = \frac{1}{(2\pi)^{p/2}}$
Bernoulli
This implies that:
- $\eta = \text{ln} (\frac{p}{1-p})$
- $T(x) = x$
- $A(\eta) = -\text{ln}(1-p)$
- $h(x) = 1$
Others
the univariate Gaussian, Poisson, gamma, multinomial, linear regression, Ising model, restricted Boltzmann machines, and conditional random fields (CRFs) are all in the exponential family
Why Exponential Family
Moment generating property
-
-
$A(\eta)$ is convex since
specific $\eta$ map to mean $\mu$, so we define an invert $\psi (\mu) = \eta$
.